Combinatorial Counting - 3.4-3.6 Estimates I

Main question: Which function is growing (significantly) faster?
Harmonic numbers are $H_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$.

Question: $\lim _{n \rightarrow \infty} H_{n}=\infty$. But how fast it grows? Is it like n or \sqrt{n} or $\log (n)$ or $\log ^{*} n$?
1: Let G_{k} be numbers $\frac{1}{i}$ such that $\frac{1}{2^{k}}<\frac{1}{i} \leq \frac{1}{2^{k-1}}$. What is $\left|G_{k}\right|$? Find a simple upper and lower bounds on $\sum_{x \in G_{k}} x$, maybe use a lower or upper bound that works for all terms in the sum.

Solution:

$$
G_{k}=\left\{\frac{1}{2^{k-1}}+\frac{1}{2^{k-1}+1}+\frac{1}{2^{k-1}+2}+\cdot+\frac{1}{2^{k-1}+2^{k-1}-1}\right\}
$$

Now it is easy to see that $\left|G_{k}\right|=2^{k-1}$.

$$
\frac{1}{2}=2^{k-1} \cdot \frac{1}{2^{k}}<\sum_{x \in G_{k}} x \leq 2^{k-1} \cdot \frac{1}{2^{k-1}}=1
$$

2: Notice that

$$
H_{n}=\sum_{i=1}^{n} \frac{1}{i} \leq \sum_{k=1}^{\ell} \sum_{x \in G_{k}} x
$$

Find ℓ and use the previous exercise to establish an upper bound on H_{n}.
Solution: The last term in the sum is $\frac{1}{n}$, which satisfies $\frac{1}{2^{\ell}}<\frac{1}{n} \leq \frac{1}{2^{\ell-1}}$ for some k. For upper bound, we need Or in other words, $n<2^{\ell}$. By taking $\log _{2}$, we get $\log _{2} n<\ell$. This is satisfied by $\ell=\left\lfloor\log _{2} n\right\rfloor+1$. Hence

$$
H_{n}=\sum_{i=1}^{n} \frac{1}{i} \leq \sum_{k=1}^{\ell} \sum_{x \in G_{k}} x \leq \sum_{k=1}^{\ell} 1=\ell=\left\lfloor\log _{2} n\right\rfloor+1
$$

3: Use a similar idea as in the previous exercise to establish a lower bound on H_{n}.

Solution:

$$
H_{n}=\sum_{i=1}^{n} \frac{1}{i} \geq \sum_{k=1}^{\ell} \sum_{x \in G_{k}} x \leq \sum_{k=1}^{\ell} \frac{1}{2}=\frac{\ell}{2}
$$

Now we need to find the largest ℓ such that the above holds. Taking $\ell=\left\lfloor\log _{2} n\right\rfloor$ works. Hence

$$
H_{n} \geq \frac{1}{2}\left\lfloor\log _{2} n\right\rfloor
$$

